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Bimodular behaviour and crack closure in 
compression in a brittle material 

L. A. F E L D M A N  
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USA 

A vibrating beam method was used to determine the elastic modulus of graphite rods. The 
frequency and apparent modulus were determined as a function of compressive end-loading. 
Following fracture of the rod, the frequency and apparent modulus were decreased. At a 
compressive end-loading of about 0.83 MPa (1 20 p.s.i.), crack closure was sufficient for the 
fractured rod to behave similarly in vibration to the unfractured rod. Thus, the fractured 
material behaves in a bimodular fashion and crack closure can be achieved to enable 
unimpeded stress transfer across the fracture surface during vibration. 

1. Introduct ion  
The presence of cracks in brittle materials can have a 
significant effect on the measured elastic properties. 
Numerous studies have investigated this effect exper- 
imentally in rock [1], graphite [2] and ceramics [3]; the 
effect has also been studied from a purely theoretical 
viewpoint [4]. Resonance techniques have been used 
to measure elastic properties in materials containing 
microcracks [3, 5]. Such macroscopically measured 
properties have sometimes been used to replace cer- 
tain microscopic quantities [3], such as mean micro- 
crack radius, ( a ) ,  and number density of microcracks, 
N, which are difficult to determine experimentally. 

In this experiment, the effect on the apparent elastic 
modulus of a single large crack, consisting of a com- 
plete fracture through the sample, was determined 
under compressive loading across the fracture surface. 
Sonic resonance was used because it can detect the 
change in modulus due to a single known and observ- 
able crack. 

2. Experimental procedure 
The experiment measured the sonic resonance of a 
simply supported, axially loaded thin beam of graph- 
ite. The material was a 3.2ram (0.125in) diameter, 
high-purity carbon spectrograph rod of bulk density 
1.58 x 10-3kgm -3 (1.58gcm-3), apparent density 
(flotation method) 1.93 x 10-~kgm -3 (1.93 gcm-3), 
and porosity 18 vol %. The sonic resonance method is 
similar in principle to methods described elsewhere 
[6, 7]. The beam was supported by sharply pointed 
metal contacts in the centres of the end faces. 

Resonance was excited by placing the sample in the 
field of a cobalt-samarium permanent magnet and 
passing an a.c. current through the sample. The 
Lorentz force on the sample produces an oscillating 
force perpendicular to the magnetic field and the 
direction of current flow. The sample was observed 
with a binocular microscope. The frequency was 
varied until the resonance peak was observed; the 

peak is easily visible as a smearing into a line of a point 
viewed on the sample. The resonance frequency could 
be located repeatedly to a precision of better than 1% 
each time. Stroboscopic illumination was occasionally 
used to freeze the sample motion to verify that the 
resonance was the fundamental transverse vibrational 
mode. 

The sample was mounted vertically between the 
current-carrying point contacts at the ends (Fig. 1), 
and the top contact was mounted on a flexible support 
to which weights could be added so that the sample 
could be axially loaded during vibration. Resonance 
frequency, which was measured as a function of end 
loading, decreased with increasing load. The load was 
restricted to less than approximately one-half the 
Euler critical buckling load, Pb, to avoid breaking the 
sample. 

The frequency against load was measured on the 
same sample, both as-machined and then after frac- 
ture at the midpoint. The 3.2 mm (0.125 in) diameter 
graphite rod, which was 40mm long, was machined 
with a single edge notch at the midpoint, 0.2 mm wide 
and 0.2 mm deep, aligned perpendicular to the sample 
axis, to facilitate subsequent fracture at that location. 
A small piece of adhesive tape, about 1 mm × 4 ram, 
was placed on the sample to aid in maintaining 
orientation of the two faces after fracture. The tape 
had a negligible effect on the measured frequency, 
because its mass was small and its modulus low com- 
pared with those of the graphite rod. 

After a number of measurements of frequency 
against load were taken on the sample, the rod was 
carefully and completely fractured through at the 
notch. The fractured ends were then mated together, 
the sample was replaced in the holder, and another 
series of frequency against load measurements was 
made. The fracture faces were photographed stereo- 
graphically in the scanning electron microscope 
(SEM) to observe the degree of matching of the frac- 
ture faces. 
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Figure 1 Schematic diagram of sonic resonance experiment: 
P = load, i = current, B = magnetic field. Arrows show direction 
of  vibration in and out of  the plane of the figure. 

3. T h e o r y  
3.1. Simply supported beam wi th axial 

loading 
According to the theory of simple vibrating beams [8], 
a beam of length L supported at each end such that at 
the ends the displacements and the bending moments 
are zero (both y = 0 and y" = 0 at x = 0 and 
x = L) has a frequency in the lowest mode of 

1 fo = ~ pl/2(~ A) 1/2 (1) 

where Pb is the Euler buckling load, ~ is the bulk mass 
density and A is the cross-sectional area. The term Pb 
is expressed as 

~2 EI  
Pb -- L 2 (2) 

where E is Young's modulus and I is the moment of 
inertia of the cross-section. 

If an axial compressive load, P, is imposed on the 
beam at the supports, the frequency of the lowest 
transverse vibrational mode becomes [8] 

f = f0(1 -- P/Pb) l/2 (3) 

where f0 (frequency of the unloaded beam) is given 
in Equation 1. In the graph of the behaviour of f 
against P (Fig. 2), as P approaches Pb the frequency 
approaches zero, which is to be expected since the 
beam is unstable with respect to a small transverse 
deflection at the buckling load, since the restoring 
force approaches zero. This relation between axial 
load, frequency and modulus can be used in analysing 
the experiment being discussed. 
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Figure 2 Frequency against axial load: f = f0(l  -- P/Pb) 1/2 . 
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Figure 3 Frequency against axial load for sample (o) before and (m) 
after fracture. 

3.2. Axially loaded beam wi th  cracks 
Next we consider the effect of cracks on the vibrational 
behaviour of an axially loaded beam. Assuming a 
number of thin planar cracks in the material, all 
oriented perpendicular to the beam axis, we expect the 
stiffness of the beam in bending to be less than that for 
an uncracked beam. The rationale is that, whereas 
cracks might close on the compression side of the 
neutral axis, they would remain open on the tension 
side and hence no stress transfer would occur across 
the crack faces. Crack closure would make the material 
bimodular, with a higher Young's modulus in com- 
pression than in tension. If cracks did not become 
closed on the compression side, because the strains 
generated during bending were small compared with 
the crack-opening displacement, no bimodular effect 
on the apparent stiffness would be evidenced. 

Changes in vibrational frequency are expected for 
an axially loaded beam, because the effective modulus 
would be higher than in the relaxed state, if the stress 
in the material created by the axial load were sufficient 
to close the cracks. During small vibrations, the cracks 
could remain closed, provided that the maximum ten- 
sile stress created by bending remained smaller than 
the compressive stress caused by the axial load. The 
beam would effectively be prestressed and would 
everywhere remain under residual compression in the 
axial direction. 

If such crack closure were to occur at some level of 
axial loading, then Equation 3 would no longer hold 
as originally stated, because Pb, and hence f0, would 
depend on P, since E would change with P. A simple 
system that illustrates this behaviour, consisting of a 
beam with many small annular cracks in the surface, 
is discussed in the Appendix. 

4. R e s u l t s  a n d  d i s c u s s i o n  
The experiment described above can be discussed in 
terms of the concepts of crack closure with increased 
stress transfer during loading. Fig. 3 plots the results 
of the frequency against load experiment for the same 
specimen, uncracked and cracked. While f decreased 
with increasing load in the uncracked case up to a load 
of about one-fourth the extrapolated buckling load, the 
sample after fracture behaved the opposite: near zero 
load, f0 (cracked) was about 50% off0 (uncracked); as 
load was applied to the cracked sample, frequency 



Figure 4 Stereomicrographs of fracture surfaces: (a, b) top surface, (c, d) bottom surface. 

initially increased; and at P of about 25% of Pb of the 
uncracked specimen, the frequencies for both the 
cracked and uncracked samples were approximately 
the same, indicating that stress transfer across the 
crack faces was similar to that in unbroken material. 
The transfer occurs at an equivalent stress of about 
0.83 MPa (120 p.s.i.), based on the cross-sectional area 
of the rod. 

SEM stereographic pairs of the fracture surfaces of 
the graphite rod (Fig. 4) depict both surfaces as having 
a high degree of surface roughness and matching well 
(hills and valleys occur in corresponding locations). 
Yet when the surfaces are initially placed in contact, 
under small load, the load is not transferred uniformly 
across the interface, as indicated by the frequency, 
which is lower than that of the unbroken sample. Only 
after the load has reached a certain level does the 
frequency of the cracked sample become indistin- 
guishable from that of the uncracked one. Although 
well matched initially, the fracture faces sustain 
enough damage or distortion to prevent them from 
seating together sufficiently for uniform stress transfer 
below a particular load. Once that load across the 
crack faces is achieved, the sample behaves elastically, 
as if the crack were not present, because the fracture 
faces remain in net compressive loading throughout 
the full vibrational cycle. This also shows that surface 
roughness of a crack is, in addition to the elastic 
behaviour of the unbroken material surrounding the 
crack, an important factor in crack reclosure. 

As a final observation, graphite is an ideal material 
for this experiment, because it combines high electrical 
conductivity and brittle fracture. Non-conductive 
brittle materials can also be made to resonate by 

applying a thin conductive stripe, such as metal film or 
conductive paint, along the specimen. 

5. Conclusion 
This experiment demonstrated that the presence of a 
simple fracture surface perpendicular to the beam axis 
in a graphite beam lowers its apparent modulus in 
sonic resonance. At a critical compressive stress, how- 
ever, the fracture faces are brought back into contact 
sufficiently to transfer stress uniformly, so that the 
beam frequency approaches that of the unbroken 
state. Thus, the crack closure depends to some extent 
on surface roughness and on elastic properties, but 
sufficient registry of the faces can be achieved under 
compression to transfer the load uniformly across the 
fracture interface and maintain the faces in contact 
during vibration. 
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Appendix: Example of frequency 
dependence on axial load of a beam 
containing cracks 
This Appendix presents a simple example of how the 
frequency of an axially loaded beam can be modified 
by changes in stiffness caused by crack closure. We 
assume a cylindrical beam of material of length L, 
radius r~, and uncracked modulus E, and a set of N 
regularly spaced annular cracks in the outer surface of 
the beam (Fig. A1). The cracks have outer radius r~, 
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Figure A1 Cylindrical beam with annular cracks. 

inner radius r0 and maximum crack opening displace- 
ment d, where Nd < L. At a certain axial load, Pc, the 
cracks close significantly. At the same time, since 
Nd < L, the overall length change of  the sample can 
be ignored as a first approximation. The sample bulk 
density 0 is related to the sample mass M and cross- 
sectional area A, where A = rcr~, and is given by 

= M/AL. The change in density under loading and 
crack closure ig also ignored as a first approximation. 

A.1. Frequency against load-cracks open 
The frequency against load for the material can now 
be calculated based on the properties for small vibra- 
tions at small loading, P < Pc, when the cracks 
remain open, and assuming that the crack spacing, 
L/N, is less than the width of the annulus, (q - r0). In 
this case, the beam consists of an undamaged core of 
radius r0 and an outer shell of  cracked material that 
carries essentially no tensile or compressive load and 
serves as dead weight [9]. From Equations 1 and 3 

1 
fo = - ~  P~/2(oA)-'/2 (A1) 

f = fo(1 - P/Pb) 1/2 P < Pc (A2) 

where Pb = rc2EI/L2 and I = rcr~/4. 

A.2. Frequency against load-cracks closed 
The same relations for the beam when P is greater 
than Pc and the cracks are effectively closed by the 
axial load, and remain closed during small vibrations, 
are calculated from Equations 1 and 3 as 

1 
f ;  = ~ - [  (P~)t/2(QA)-m (A3) 

f '  = f ; ( 1  - p/p£)~/2 P > Pc (A4) 

where P~ = ~2EI'/L2 and I '  = ~r4/4. 
Two f against P curves are predicted, in Fig. A2, 

one for the material with open cracks (from Equation 
A2) and one for closed cracks (from Equation A4). In 
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Figure A2 Crack closure under load and change off0 and Pb. 

a realizable material, crack closure would be expected 
to be gradual over some load range, rather than 
abrupt at an exact loading Pc; therefore, a positive 
deviation from thefagainst  P curve would be expected 
for the cracked material as load is applied, eventually 
meeting the curve for the closed-crack material beyond 
Pc. For  this reason, a smooth interpolation between 
the two curves has been sketched in the range of P 
near Pc. 

The sample in the experiment appears to exhibit this 
type of bimodular behaviour. The frequency of the 
fractured sample increases with load until it has 
roughly the same frequency as the unbroken sample, 
which is analogous to going from the open-crack to 
the closed-crack state. This model can also serve as a 
simple example of  the effect of crack closure under 
load on the elastic modulus of a body with many 
microcracks. 
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